
SANDIA REPORT
RECORD COPY
M)!fafiwGMuwRmw

SAND88– 1431 ● UC–32
Unlimited Release
Printed August 1988

.

ALGEBRA — A Program That Algebraically
Manipulates the Output of a Finite
Element Analysis (EXODUS Version)

Amy P. Gilkey

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DPO0789

SF?900Cl(8 81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal l~ability ~r responsibility for the accuracy,
completeness, or usefulness of any mformatlon, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or
any of their contractors or subcontractors.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy A04
Microfiche copy: AO1

.

SAND88-1431
Unlimited Release

Printed August 1988

Distribution
UC-32

ALGEBRA –
A Program That Algebraically Manipulates

the Output of a Finite Element Analysis

(EXODUS Version)

Amy P. Gilkey

Applied Mechanics Division III

Sandia National Laboratories

Albuquerque, New Mexico 87185

Abstract

The ALGEBRA program allows the user to manipulate data from a finite element

analysis before it is plotted. The finite element output data is in the form of variable

values (e.g., stress, strain, and velocity components) in an EXODUS database. The

ALGEBRA program evaluates user-supplied functions of the data and writes the

results to an output EXODUS database which can be read by plot programs.

ACKNOWLEDGEMENTS

The original version of ALGEBRA was written by Mary R. Sagartz and Johnny H.

Biffle [1].

The version of ALGEBRA described in [2] manipulates a SEACO database [3].

4

Contents

l Introduction

2 Equation Input

2.1 The Assigned Variable

2.2 Restricting the Nodes and/or Elements

2.3 Constants . .

2.4 Variables . .

2.5 Operators . .

2.6 Functions . .

3 Command Input . .

3.1

3.2

3.3

3.4

3.5

3.6

.

.

.

.

.

.

.

.

.

.

.

. .

. .

. .

. .

. .

Database Editing Commands

Variable Selection Commands

.

.

.

.

.

.

.

Time Step Selection Commands .

Mesh Limiting Commands . .

.

.

.

.

.

.

.

Element Block Selection Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Information and Termination Commands

4 The Output EXODUS Database

5 Informational and Error Messages

6 Executing ALGEBRA

6.1 Execution Files

6.2 Special Software

References

A The EXODUS Database Format

5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7

9

9

10

11

11

12

12

15

16

17

19

22

23

24

27

29

31

31

31

33

35

BSummary of Functions41

C Command Summary 43

D Sample Session .47

E Site Supplements51

E.l VAX EMS51

E.2CRAY CUSS51

1. Introduction

The ALGEBRA program allows the user to manipulate data horn a finite element

program before it is plotted. The program reads the database output horn an analysis

program, manipulates the data using algebraic expressions supplied by the user, and
writes the new data to a database to be processed by a plot program such as BLOT

[4].

The program’s algebraic evaluations allow special functions that are not provided

by the analysis program (such as principal values, effective stress, and pressure) to

be available for plotting. The evaluations include all of the FORTRAN arithmetic

operations and most of the FORTRAN functions plus several special functions.

Both the input and output databases are in the EXODUS database format [6]. The

EXODUS format defines four types of variables:

● A history variable has a value representative of the system as a whole at each

time step (e.g., the total energy).

● A global variable is the same as a history variable except that global variables

are only included in “whole” time steps (explained below).

● A nodal variable has a value for every node of the mesh at each whole time

step in the analysis (e.g., the displacement in the x-direction).

● An element variable has a mlue for every element of the finite element analysis

at each whole time step (e.g., the stress in the x-direction).

There are two types of time steps in an EXODUS database: a “history-only” time

step contains the values for the history variables only; a “whole” time step includes

the values for all the variables (history, global, nodal, and element).

Each element in the database is assigned to an “element block”. An element block

distinguishes a material or an element type (such as a truss or quadrilateral). A

specific element variable may be undefined for some element blocks, meaning that

the variable has no value for elements in that element block.

The algebraic expressions to be evaluated in ALGEBRA depend on the values ikom

the input database. These input values include the time of the time step, the nodal

coordinates, and the history, global, nodal, and element variables calculated by the

analysis program, including values at specific nodes or elements. The values of vari-

ables from the previous database time step or the first database time step may also be

7

referenced in the algebraic expressions. History, global, nodal, and element variables

are created by ALGEBRA in the output database, with the variable type determined

by the types of variables in the expression being evaluated.

The EXODUS database format includes the names of the coordinates and variables.

This allows the user to reference the input variables by name and to associate a

meaningful name with calculated data.

There are two or three (depending on the number of dimensions in the mesh) spe-

cial nodal variables which cent tin the displacement components at each node. The

BLOT plot program [4] expects these variables to follow certain order and naming

conventions. These variables must be the first nodal variables and they must start

with “D” and end with the last letter of the corresponding coordinate name.

ALGEBRA allows the user to restrict the information that is written to the output

database. The time steps to be written may be selected from those available on the

input database. The size of the output mesh may be limited by giving the nodal

coordinates of a section of the mesh or by selecting elements by element block.

8

2. Equation Input

The expressions to be evaluated are entered by the user as equations. The syntax

is very similar to FORTRAN equation syntax. The first item is the variable to be

assigned, followed by an ‘=”, then the expression to be evaluated. The expression

consists of constants, variables, arithmetic operators, and functions.

The equations must adhere to the following syntax rules.

● Blanks are treated as delimiters, but are otherwise ignored.

● Either lowercase or uppercase letters are acceptable, but lowercase letters are

converted to uppercase.

● A “‘” character in any equation starts a comment. The “‘n and any characters

following it on the line are ignored.

● An equation may be continued over several lines with a “>” character. The “>”

and any characters following it on the current line are ignored and the next line

is appended to the current line.

2.1 The Assigned Variable

The assigned variable name must start with a letter and can be up to eight alphanu-

meric characters (A–Z, O-9) long. A name that is longer than eight characters is

truncated with a wsming. Blanks cannot be embedded in a variable name.

All assigned variables (except temporary variables specified by a DELETE command)

will be written to the output database. The input database variables are not written

to the output database unless they are assigned in an equation (such as X = X) or

transferred with a SAVE command.

The type of the assigned variable depends on the expression. There are four types of

“quantities” in an expression that are related to the variable types: .

● History quantities include history variables, constants, and the time step time.

● Global quantities include global variables and nodal or element variables for

specific nodes or elements.

● Nodal quantities include nodal variables and nodal coordinates, unless the value

is limited to a specific node.

9

● Element quantities include element variables, unless the value is limited to a

specific element.

History and global quantities are referred to as “single-value” quantities. Nodal and

element quantities are referred to as ‘arrays”.

Each part of an expression yields a result of a particular type. The types of constants

and variables are defined above. The type of an arithmetic operation is dependent

on the types of its operands. If both operands are history quantities, the operation

yields a history quantity. If the operands are global and/or history quantities, a

global quantity results. If either operand is an array, the operation type is the array

type. Thus a nodal quantity and an element quantity cannot appear in the same

operation. For array operations, the operator is applied to each array element. The

type of a function is dependent on the types of its parameters. The rules for operand

types also apply to all function parameters. One special type of function yields a

global quantity regardless of the parameter type.

Equations that result in a history variable are evaluated for each time step. Equations

resulting in other types of variables are evaluated only for “whole” time steps.

The assigned variable can be reassigned, but it must be assigned to the same variable

type (history, global, nodal or element);

The equations are evaluated in order. The assigned variables are grouped by variable

type, but are otherwise output in the order they are first assigned by the equations.

2.2 Restricting the Nodes and/or Elements

Nodes and/or elements may be deleted from the input database with the ZOOM or

VISIBLE commands. An input variable is defined for all input nodes and/or elements.

An output variable is only defied for the nodes and/or elements to be output.

Element variables may be undeiined for certain element blocks. This maybe further

restricted with the BLOC KS command. If two or more element variables are combined

with an operator or are function parameters, the resulting variable is only defined

for an element block if all the variables involved are defined for that block.

When an operation or function is performed on an array variable, it is only performed

for the defined nodes/elements. This is done to prevent problems with numerical

errors such as divide by zero for undefined values.

10

2.3 Constants

Constants can be entered in any legal FORTRAN numeric format (e.g., 5,

5.4E3). All integers are converted to real numbers. If the constant is signed,

thesis should surround the sign and constad.

2.4 Variables

The variables that may be found in the expression to be evaluated are:

● any input database history, global, nodal or element variable,

● the values for any coordinate,

● a reference to a specific nodal or element quantity,

● the time associated with each time step, and

● any previously assigned variable.

5.4 or

paren-

If an embedded blank is included in an input database variable or coordinate name,

the blank must be deleted in references to the variable. For example, variable “SIG X“

must be entered as “SIGX”.

The coordinates may be referenced in the expression by name. They are treated as

an input database nodal variable whose value remains constsnt in all “whole” time

steps.

If the value for a specific node or element is desired, a “$” and the node or element

number is appended to the variable name. For example, S1GR$40 refers to the value

for the 40th element of variable S IGR. A specifier may be appended to the name of

any nodal or element quantity in an expression, including coordinates and previously

assigned variables. References to specific nodes and/or elements can only be made if

the variable is defined at that node and/or element.

The value of a variable in the previous time step is referenced by appending a “:” to

the variable name. The value in the first time step is referenced by appending a “:1”

to the variable name. If time steps are selected, the previous and first time steps

refer to the selected time steps, not the input time steps.

The name “TIM E“ is reserved for the time associated with each time step. The output

database times are copied from the input database unless a value is assigned to the

variable TIM E. The TIME expression must evaluate to a history quantity. TIME may

also appear in the expression, referring to the input or assigned database time.

The equations are evaluated in order. References to a variable name in the expression

refer to the last assigned value, or to the input variable if the name has not been

11

assigned. For example, if input global variable CONST has a value of4 and the

following equations are executed,

X = CONST
CONST = 2* CONST
Y = CONST

the result is X equals 4, CONST equals 8, and Y equals 8.

2.5 Operators

The legal operations are addition (+), subtraction (–), multiplication (*), division

(/), and exponentiation (**). The operands may be either single-value or array

quantities as explained in Section 2.1.

FORTRAN operator precedence rules apply (e.g., multiplication is performed before

addition). Parenthesis may be used to change the order of evaluation.

Two operators cannot be placed in succession. To precede a value with a sign, enclose

the sign and value in parenthesis. For example,

A = -5 * –SIN(O.5)

should be written as

A = (–5) * (-SIN(O.5))

where the parenthesis around the –5 are optional.

2.6 Functions

Many of the standard FORTRAN functions and several special functions are imp-

lemented in ALGEBRA. These functions are summarized in Appendix B. The

parameters for any function may be expressions and all parameters must be sup-

plied. The parameters may be either single-value or array quantities as explained in

Section 2.1.

A function in an equation is distinguished from a variable name by the ‘(” which

follows the function name. This allows the user to assign variable names which are

the same as the function names and to reference input database variables with the

same names as the functions.

12

FORTRAN Functions

The standard FORTRAN functions implemented are: Al NT, AN INT, ABS, MOD,

SIGN, DIM, MAX, MIN, SQRT, EXP, LOG, LOGlO, SIN, COS, TAN, ASIN, ACOS,
ATAN, ATAN2, S1N H, COS H, and TAN H. The use and result of these functions is the

same as in FORTRAN, and the same restrictions apply.

Tensor Principal Values and Magnitude Functions

Functions P MAX and PM I N calculate the maximum and minimum principal values

of a symmetric tensor. For example, to obtain the maximum principal values for a

tensor 2’,

SMAX = PMAX (Tll, Tzz, T33, T12, T23, T31).

For a two-dimensional tensor or a tensor using cylindrical coordinates for an axisym-

metric solution, PMAX2 and PM I N2 may be used:

SMAX = PMAX2 (Tll, T22, T12).

The function TMAG calculates the magnitude of the deviatoric part of a symmetric

tensor. To calculate the magnitude of tensor T,

SMAG = TMAG (Tll, T22, T33, T12, 2’23, T3J

where the following calculation is made:

SMAG = /(Tll – T22)2 + (2’22 – T33)2 + (T33 – T11)2 + 6 * (T..2+ T& + T;l).

To obtain the von Mises stress, the value supplied by function TMAG is multiplied by

the constant l/fi. To calculate effective strain, multiply by the constant @/3.O.

IF Functions

The functions IFLZ, I FEZ, and IFGZ provide a simple if-then-else capability. Each

function expects three parameters: a condition, a true result, and a false result.

Function I FLZ returns the true result if the condition evaluates to less than zero;

otherwise the function returns the false result. Function 1FEZ checks for equal to

zero and IFGZ checks for greater than zero. For example, the equation

z = IFLZ (cod, rtrue, rfuhe)

with global parameters cond, rtrue, and rfahe could be implemented in FORTRAN

by

13

IF (C07d .LT. 0.0) THEN
= rtrue

ELSE z
= rfah e

END 1;

All the parameters are evaluated before the function, so both the true result and the

false result are evaluated even though only one is needed.

Array a Global Variable Functions

The functions SUM, S MAX, and S M IN perform a calculation on a

array parameter which produces a global result. SUM sums all

nodal or element

the array values.

SM AX and SMI N return the maximum and minimum of all the array values.

Values for specific nodes and/or elements are only included in the function calculation

if the variable is defined at that node and/or element.

Envelope Functions

An “envelope” function performs a c~culation that is cumulative for W previous

time steps. The function ENVMAX results in an array (assuming the parameter is an

array) that is the maximum of each array value for all previous selected time steps

and the current time step. On the last time step, ENV M AX cent ains the maximum of

each array value for all selected time steps. ENVM 1N is the corresponding minimum

function.

14

3. Command Input

The user can issue a command whenever an equation is expected. The commands

are in free-format and must adhere to the following syntax rules.

● Valid delimiters are a comma or one or more blanks.

● Either lowercase or uppercase letters are acceptable, but lowercase letters are

converted to uppercase.

● A “‘” character in any command line starts a comment. The “‘” and any

characters following it on the line are ignored.

● A command may be continued over seversl lines with an “>” character. The

“>” and any characters following it on the current line are ignored and the next

line is appended to the current line.

Each command has an action keyword or ‘verb” followed by a variable number of

parameters.

The command verb is a character string. It may be abbreviated, as long as enough

characters are given to distinguish it from other commands.

The meaning and type of the parameters is dependent on the command verb. Most

command parameters are optional. If an optional parameter field is blank, a command-

dependent default value is supplied. Below is a description of the vslid entries for

parameters.

● A numeric parameter may be a real number or an integer, A real number may

be in any legal FORTRAN numeric format (e.g., 1, 0.2, -1 E-2), An integer

parameter may be in any legal integer format.

● A string parameter is a literal character string. Most string parameters may

be abbreviated.

● Variable names must be fully specified. The blank delimiter creates a problem

with database variable names with embedded blanks. The program handles

this by deleting all embedded blanks from the input database names. For

example, the variable name “SIG R“ must be entered as “SIGR”. The blank

must be deleted in any references to the variable. All database names appear

in uppercase without the embedded blanks in all displays.

15

The notation conventions used in the command descriptions are:

The command verb is in bold type.

A literal string is in all uppercase SANSERI F type and should be entered as

shown (or abbreviated).

The value of a parameter is represented by the parameter name in itaiics.

A literal string in square brackets (”[]“) represents a parameter option which

is omitted entirely (including any following comma) if not appropriate e. These

parameters are distinct horn most parameters in that they do not require a

comma as a place holder to request the default value.

The default value of a parameter is in angle brackets (”< >“). The initial value

of a parameter set by a command is usually the default parameter value. If

not, the initial setting is given with the default or in the command description.

The commands are summarized in Appendix C.

3.1 Database Editing Commands

TITLE

TITLE sets the title to be written to the output database. The title is input

on the next line. If no TITLE command is issued, the input database title is

written to the output database.

16

3.2 Variable Selection Commands

SAVE variablel, variable2, . . . or optionl, option2, . . . <no default>

SAVE transfers variables from the input database to the output database. An
individual variable may be transferred by listing its name as a parameter. For

example,

SAVE Y, Z

has the same effect as the equations (with the exception noted below):

Y=Y

2=2.

Assigned variables are affected by the BLOCKS command; SAVEd variables are

not.

The following options transfer sets of variables:

SAVE HISTORY

transfers all input database history variables.

SAVE GLOBAL

transfers all input database global variables.

SAVE NODAL

transfers all input database nodal variables.

SAVE ELEMENT

transfers all input database element variables.

SAVE ALL

transfers all input database history, global, nodal, and element vari-

ables.

The SAVE command causes the variables to be output in the same order they

would be if they were assigned by equations at that point.

If a SAVEd variable is also an assigned variable, the assigned value is written

to the output database, regardless of whether the SAVE is done before or after

the assignment.

17

DELETE varialdel, variable2, . . . <no default>

DELETE marks an assigned variable as a temporary variable that will not be

written to the output database. A variable must be assigned (or SAVEd) before

it is listed in a DELETE command.

18

3.3 Time Step Selection Commands

ALGEBRA allows the user to restrict the time steps from the input database that

are written to the output database. By default, all the time steps tkom the input

database are written to the output database.

Time step selection is performed in one of the following modes:

● Interval-Times Mode selects time steps at uniform intervals between a minimum

and a maximum time. If this mode has a delta offset, the first selected time is

not the minimum time, but the minimum time plus the interval. If this mode

has a zero offset, the first selected time is the minimum time.

● All-Available-Times Mode selects all time steps between a minimum and a

maximum time.

● User-Selected-Times Mode selects time steps which are explicitly specified by

the user.

The nearest time step from the database is chosen for each selected time.

The following are the time step selection parameters:

● tmin is the minimum selected time,

● tmaz is the maximum selected time,

● nintu is the number of selected time intervals, and

● delt is the selected time interval.

In the interval-times mode, up to nintv time steps at interval delt between tmin and

trnaz are selected. The mode may have a delta offset or a zero offset. With a delta

offset, the first selected time is tmin+ deli; with a zero offset, it is tmin.

In the interval-times mode with a delta offset, the number of selected time intervals

nintv and the selected time interval delt are related mathematically by the equations:

delt = (tnzax – tmin)lnintv (1)

nintv = int ((tmin – tmaz)/cfeU) (2)

With a zero offset, nintv and delt are related mathematically by the equations:

delt = (tmax – tmin)/(nintv – 1) (1)

nintv = int ((tmin – tmaz)/deU) + 1 (2)

The user specifies either nintv or delt. If nintv is specified, deli is calculated using

equation 1. If delt is specified, nintv is calculated using equation 2.

19

In the all-available-times mode, all database time steps between tmin and hnaz are

selected (parameters nintv and delt are ignored). In the user-selected-times mode,

the specified times are selected (all parameters are ignored).

TMIN tmin <minimum database time>

TM IN sets the minimum selected time tmin to the specified parameter value.

If the user-selected-times mode is in effect, the mode is changed to the all-

available-times mode.

In interval-times mode, if nintu is selected (by a NINTV or ZINTV command),

delt is calculated. If delt is selected (by a DELTIME command), nintu is calcu-

lated.

TMAX trnaz <mtimum database time>

TM AX sets the maximum selected time tmaz to the specified parameter value.

If the user-selected-times mode is in effect, the mode is changed to the all-

available-times mode.

In interval-times mode, if nintv is selected (by a NINTV or ZINTV command),

delt is calculated. If deh? is selected (by a DELTIM E command), nintu is calcu-

lated.

NINTV nintv <10 or the number of database time steps – 1, whichever is smaller>

N INTV sets the number of selected time intervals nintu to the specified parame-

ter value and changes the mode to the interval-times mode with a delta offset.

The selected time interval deh! is calculated.

ZINTV nintv <10 or the number of database time steps, whichever is smaller>

ZI NTV sets the number of selected time intervals nintv to the specified param-

eter value and changes the mode to the interval-times mode with a zero offset.

The selected time interm.1 deh is calculated.

DELTIME delt <(tmaz – tmin)/(nintv – 1), where ninfu is 10 or the number of

database time steps, whichever is smaller>

DELTI M E sets the selected time interval delt to the specified parameter value

and changes the mode to the interval-times mode with a zero offset. The

number of selected time intervals nintv is calculated.

ALLTIMES

ALLTI M ES changes the mode to the all-available-times mode.

20

TIMES [ADD,] tl, tz, . . . <no times selected>

TIM ES changes the mode to the user-selected-times mode and selects times tl,

tz, etc. The closest time step fkom the database is selected for each specified

time.

Normally, a TIMES command selects only the listed time steps. If ADD is the
first parameter, the listed steps are added to the current selected times. Any

other time step selection command clears all TIM ES selected times.

Up to the maximum number of time steps in the database may be specified.

Times are selected in the order encountered on the database, regardless of the

order the times are specified in the command. Duplicate references to a time

step are ignored.

STEPS [ADD,] nl, nz, . . . <no steps selected>

The STEPS command is equivalent to the TIMES command except that it

selects time steps by the step number, not by the step time.

HISTORY ON or OFF <ON>

HISTORY controls whether history time steps are included in the selected time

steps (if ON) or only whole time steps (if OFF).

For example, if the times ilom the database are 0.0, 0.5, 1.0, 1.5, etc., the commands

TMIN 0.0
TMAX 5.0
NINTV 5

select times 1.0, 2.0, 3.0, 4.0, and 5.0. If the NINTV command is replaced by

ZINTV 3

then times 0.0, 2.5, and 5.0 are selected. If the NINTV command is replaced by

DELTIME 2.0

then times 0.0, 2.0, 4.0 are selected.

Another example is given in Appendix D.

21

3.4 Mesh Limiting Commands

These commands limit the mesh that is written to the output database by deleting

nodes and elements that do not satisfy the limiting conditions. A deleted node or

element is entirely removed from the output database and is ignored in all equation

evaluations. Deleting nodes and elements may cause the nodes and elements on the

output database to be numbered differently than those on the input database.

If both the ZOOM and VISI BLE commands are in effect, the nodes and elements must

satisfy both the limiting conditions to be written to the output database.

By default, the entire mesh is written to the output database.

ZOOM zrnin, zmaz, ymin, ymaz, zmin, zmaz <no default>

ZOOM sets the limits of the mesh to be written to the output database. Limits

zmin to zmaz apply to the first coordinate, ymin to ymaz to the second coor-

dinate, and zmin to zmaz to the third coordinate (if any). A node is deleted if

it is not within the rectangle (or brick) defined by these limits. An element is

deleted if all of its nodes are deleted.

VISIBLE [ADD or DEL ETE,] Mock.idl, bJock-id2, . . . <all element blocks>

VISIBLE limits the element blocks to be written to the output database. An

element that is not in a “visible” element block is deleted. A node is deleted if

all the elements containing the node are deleted.

The block.id refers to the element block identifier (displayed by the LIST BLOCKS
command).

If there is no parameter, all element blocks are visible. If the first parameter

is ADD or DELETE, the element blocks listed are added to or deleted horn the

current visible set. Otherwise, only the element blocks listed in the command

are visible.

22

3.5 Element Block Selection Commands

BLOCKS [ADD or DE LET E,] biock-idl, block.id2, . . . <all element blocks>

BLOCKS selects the element blocks which have defined values far all following

equations. An element variable can be defined for an element block only if that

block is selected. This command can only mark element variables as undefined,

it cannot mark previously undefined variables as defined. It has no effect on

nodal variables.

The BLOCKS command affects all following equations unless another BLOCKS
command is entered. The BLOCKS command has no effect on the output of

SAVEd element variables.

The block-id refers to the element block identifier (displayed by the LIST BLOCKS
command).

If there is no parameter, all element blocks are selected. If the first parameter

is ADD or DELETE, the element blocks listed are added to or deleted from the

current selected set. Otherwise, only the element blocks listed in the command

are selected.

MATERIAL [ADD or DELETE,] block-idl, block-idz, . . . <all elementblocks>

MATERIAL is exactly equivalent to a BLOCKS command.

23

3.6 Information and Termination Commands

SHOW command <no parameter>

LIST

SHOW displays the settings of parameters relevant to the command. For ex-

ample, SHOW TM IN displays the time step selection criteria.

SHOW with no parameters displays any nondefauh command parameters and

all input equations.

option <no parameter>

LIST

LIST

LIST

LIST

LIST

LIST

displays database information, depending on the option.

VARS

displays a summary of the database. The summary includes the database

title; the number of nodes, elements, and element blocks; the number of

node sets and side sets; and the number of variables.

BLOCKS or MATERIAL

displays a summary of the element blocks. The summary includes the

block identifier, the number of elements in the block, the number of nodes

per element, and the number of attributes per element.

QA

displays the QA records and the information records.

NAMES

displays the names of the history, global, nodal, and element variables.

STEPS

displays the number of time steps and the minimum and mtium time

step times.

LIST TIMES

displays the step numbers and times for all time steps on the database.

24

HELP option <no parameter>

HELP displays information about the ALGEBRA program, depending on the

option.

HELP RULES

displays a summary of the equation syntax rules.

HELP COMMANDS

displays a summary of the commands.

HELP FUNCTIONS

lists the names of all available functions and displays some useful equa-

tions, such as the equation for effective strain.

HELP

lists the available HELP options and displays any nondefauh command

parameters and all input equations.

LOG

LOG requests that the log file be saved when the program is exited. Each

correct equation and command that the user enters (excluding informational

commands such as SHOW) is written to the log file.

END

END ends the equation input and begins the equation evaluation. The word

“EXIT” may be used in place of “EN D“.

QUIT

QIJIT ends the equation input and efits the program immediately without
writing an output database.

25

26

4. The Output EXODUS Database

The EXODUS database format is briefly described in Appendix A. The first part of

the EXODUS database consists of the mesh description in the GENESIS database

format [5]. The mesh description includes the nodal coordinates, the element block

information (including the element connectivity y), the node sets, and the side sets.

The second part of the dat abase contains the time step information, including all the

variable values for each time step.

If nodes and/or elements have been deleted horn the database with a ZOOM or

VISIBLE command, the entire output database reflects the deletions and any node or

element renumbering caused by the deletions.

The output database mesh description is copied (with changes for deletions) from

the input database. The database title may be changed with the TITLE command.

All QA records from the input database are copied to the output database, and a

record is added describing the current ALGEBRA run. All input database informa-

tional records are copied to the output database.

All names on the output database are in uppercase and have all embedded blanks

removed. The coordinate and element block names from the input database are

converted and copied (with changes for deletions) to the output database. The output

variable names are assigned in the equations.

The output database element variable truth table has an entry for each output ele-

ment variable which indicates whether the variable is defined for each element block.

This is determined by the input element variable truth table, the equations, and the

BLOCKS command.

The output time steps include the time step times and the output variables for each

time step. Each selected input time step is processed; non-selected time steps are

ignored. For a history-only time step, only the history variables are evaluated and
written out. For a whole time step, all variables are evaluated and written to the

output database.

27

5. Informational and Error Messages

ALGEBRA operates in three stages: (1) it scans the input database for general

information, (2) it inputs commands and equations from the user, (3) it re-reads the

input database and copies the mesh description to the output database, and (4) it

evaluates the equations for each time step.

ALGEBRA expects a valid database. If a format error is discovered before the time

steps, the program prints an error of the following format:

DATABASE ERROR - Reading database item

and aborts. This problem may occur either while scanning the input database or

while copying the mesh description to the output database.

If a format error is found while reading the time steps, the following error message

is printed:

WARNING - End-of-file during time steps
or

DATABASE ERROR - Reading database item.

If this error is encountered while scanning the input database, the time step with

the error and all following time steps are ignored, but the program continues and

the previous time steps are available for processing. Some database errors may not

be detected until the equations are being evaluated. The program aborts when the

error is encountered, but the output database is correct for all previous time steps.

An equation is checked for syntax errors as soon as the user enters the line. If an

error is found, a message is printed and the equation is ignored (with a message to

that effect). If only a warning is printed, the equation is accepted. If the message is

not sufficiently informative, the description of the equation syntax (Chapter 2) may

be helpful.

A command is performed as soon as it is entered. A command error usually causes

the command to be ignored. The command is usually performed if oxily a warning

is printed. The display after the command shows the effect of the command. If

the message is not sufficiently informative, the appropriate command description

(Chapter 3) maybe helpful.

The evaluation loop processes each time step by reading the needed input database

variables, evaluating the equations, and writing the results to the output database.

29

Any error during this stage causes the program to abort (with a fatal error message).

The output database is readable, but it contains only the data from the time steps

processed before the error.

A numerical error while evaluating the equations (such as divide by zero) causes a

fatal error. A message is printed describing the error and the equation that caused

the error is displayed after the error message.

The program allocates memory dynamically as it is needed. If the system runs out

of memory, the following message is printed:

FATAL ERROR - Too much dynamic memory requested

and the program aborts. The user should first try to obtain more memory on the

system. Another solution is to run the program in a less memory-intensive fashion.

For example, entering fewer equations may require less memory.

ALGEBRA has certain programmer-defined limitations (for example, the number of

curves that may be defined. The limits are not specified in this manual since they

may change. In most cases the limits are chosen to be more than adequate. If the

user exceeds a limit, a message is printed. If the user feels the limit is too restrictive,

the code sponsor should be notified so the limit may be raised in future releases of

ALGEBRA.

30

6. Executing ALGEBRA

The details of executing ALGEBRA are dependent on the system being used. The

system manager of any system that runs ALGEBRA should provide a supplement

to this manual that explains how to run the program on that particular system. Site

supplements for all currently supported systems are in Appendix E.

6.1 Execution Files

The table below summarizes ALGEBRA’s file usage.

Description Unit Number Type File Format

User input standard input input Section 2 and 3

User output standard output output ASCII

EXODUS database 11 input Appendix A

EXODUS database 12 output Appendix A

Log file 99 optional output ASCII

All files must be connected to the appropriate unit before ALGEBRA is run. Each

file (except standard input and output) is opened with the name retrieved by the

EXNAME routine of the SUPES library [8].

6.2 Special Software

ALGEBRA is written in ANSI FORTRAN-77 [7] with the exception of the following

system-dependent features:

● the OPEN options for the ties and

● the use of ASCII characters that are not in the FORTRAN standard character

set.

ALGEBRA uses the following software packages:

the SUPES package [8] which includes dynamic memory allocation, a free-field

reader, and FORTRAN extensions and

the SLATEC mathematics library to calculate the principle values of second-

order tensors.

31

.

32

References

[1] Mary R. Sagartz and Johnny H. Bii?le, “ALGEBRA - A Computer Program

That Algebraically Manipulates Finite Element Output Data,” SAND80-2061,

Sandia National Laboratories, Albuquerque, NM, September 1980.

[2] Amy P. Gilkey, “ALGEBRA - A Program That Algebraically Manipulates the

Output of a Finite Element Analysis: SAND86-0881, San&a National Labora-

tories, Albuquerque, NM, May 1986.

[3] Zelma E. Beisinger, “SEACO: Sandia Engineering Analysis Department Code

Output Data Base,” SAND84-2004, Sandia National Laboratories, Albuquerque,

NM, in preparation.

[4] Amy P. Gilkey, “BLOT - A Mesh and Curve Plot Program for the Output

of a Finite Element Analysis ,“ SAND88-1432, Sandia National Laboratories,

Albuquerque, NM, in preparation.

[5] Lee M. Taylor, Dennis P. Flanagan, and Wfiam C. Curran, “The GENESIS Fi-

nite Element Mesh File Format ,“ SAND86-O91O, Sandia National Laboratories,

Albuquerque, NM, May 1986.

[6] William C. Mills-Curran, Amy P. Gilkey, Dennis P. Flanagan, “EXODUS: A Fi-

nite Element File Format for Pre- and Post-Processing,” SAND87-2997, Sandia

National Laboratories, Albuquerque, NM, in preparation.

[7] American National Standard Progmmming Language FORTRAN, American Na-

tional Standards Institute, ANSI X3.9-1978, New York, 1978.

[8] Dennis P. Flanagan, William C. Curran, and Lee M. Taylor, ‘SUPES - A Soft-

ware Utility Package for Engineering Science,n SAND86-0911, San&a National

Laboratories, Albuquerque, NM, September 1986.

33

34

A. The EXODUS Database Format

The following code segment reads an EXODUS database. The first segment is the

GENESIS database format.

c

c

c

c

c
c
c

c
c
c
c
c
c
c

c

c

--Open the EXODUS database file

NDB = 9

OPEN (~IT=NDB, STATUS=’OLD’, FORM=’UNFORMATTED’)

--Itead the title

READ (ND13) TITLE
--TITLE- the title of the database (ClIARACTER*80)

--Read the database sizing parameters

READ (NDB) NUMNP, NDIM, NU24EL,NELBLK,

& NUMNPS,LNPSNL,NUMESS,LESSEL,LESSNL,NVERSN
--rep - the number of nodes

--NDIM - the number of coordinates per node

--mL - the number of elements

--NELBLK - the number of element blocks
--NUMNPS- the number of node sets

--LNPSNL - the length of the node sets node list

--NUMESS - the number of side sets

--LESSEL - the length of the side sets element list

--LESSNL - the length of the side sets node list

--NVERSN - the file format version number

--Read

READ

--Read

READ

the nodal coordinates

(NDB) ((cOM(lNP, I), sNP=i ,mp), 1=1 ,NDIIO

the element order map (each elementmust be listedonce)

(NDB) (mpEL(IEL), IEL=i,mL)

35

c --Read the elementblocks

c

c

c

c
c
c
c
c

c

c

DO 100 IEB = 1, NELBLK

--Readthe sizingparametersfor this elementblock

READ (NDB)IDELB,NUMELB,NUKLNK,NATRIB
--IDELB- the elementblock identification(mustbe unique)
--NUMELB- the number of elementsin this block
-- (the sum of NUMELBfor all blocks must equal NUMEL)

--NUMLNK - the number of nodes defining the connectivity
-- for an element in this block
--NATRIB- the number of elementattributesfor an element
-- in this block

--Read the connectivityfor all elementsin this block

READ (NDB) ((LINK(J,I),J=i,NwNK, I=i,NUMELB)

--Read the attributesfor all elementsin this block

READ (nB) ((ATRIB(J,I),J=i,NATRIB,I=i,NUMELB)

100 CONTINUE

36

c --Readthe node sets

READ (NDB) (IDNPS(I),I=i,mps)

c --IDNPS- the ID of each node set
READ (NDB) (NNNPS(I),I=i,NUMNPS)

c --NNNPS- the number of nodes in each node set

READ (NDB) (IXNNPS(I),I=i,Nu14NPs)
c --IXNNPS- the index of the first node in each node set

c -- (in LTNNPS and FACNPS)

READ (NDB) (LTNNps(I), I=l,LNPsNL)

c --LTNNPS - the nodes in all the node sets

READ (NDB) (FACNPS(l), I=i,LmpsNL)

c --FACNPS - the factor for each node in LTNNPS

+

c --Readthe side sets

MAD (NDB) (IDEsS(I),I=i,mss)

c --IDESS- the ID of each side set
READ (NDB) (NEESS(I),I=l,NUHESS)

c --NEESS‘ the number of elementsin each side set
READ (NDB) (NNEss(I),I=i,-ss)

c --NNESS- the number of nodes in each side set
READ (NDB) (IXEESS(I),I=i,mss)

c --IXEESS- the index of the first elementin each side set
c -- (in LTEESS)

READ (NDB) (IXNESS(I),I=i,NUIIfESS)

c --IXNESS- the index of the first node in each side set
c -- (in LTNESS and FACESS)

READ (NDB) (LTEEss(I),I=i,LEssEL)

c --Lmss - the elementsin all the side sets
READ (NDB) (LTNEsS(I),I=I,LESSNL)

c --LTNESS- the nodes in all the side sets
READ (NDB) (FACESS(I)$I=I,LEwNL)

c --FACESS - the factor for each node in LTNESS

37

A valid GENESIS database may end at this point or at any point until the number

of variables is read.

c --Read the QA header information

READ (NDB, END=900) NQAREC

c --NQAREC - the number of QA records (must be at least 1)

DO 110 IQA = 1, ?MX(l,NQAREC)

READ (EDB) (QATITL(I,IQA), 1=1,4)

c --QATITL - the QA title records; each record contains:

c -- 1) analysis code name (CHARACTER*8)

c -- 2) analysis code qa descriptor (CIIARACTER*8)

c -- 3) analysis date (CEARACTER*8)

c -- 4) analysis time (CHARACTER*8)

110 ’CONTINUE

c --Read the optional header text

READ (NDB, ErJD=900) NINFO

c --NINFO- the number of informationrecords

DO 120 I = 1, NINFO
READ (NDB) INFo(I)

--INFO - extra informationrecords (optional)that contain
-- any supportivedocumentationthat the analysiscode

c
c

c
120 CONTINUE

-- developerwishes (CHARACTER*80)

c --Read the coordinate names

READ (NDB,ErJD=900)(Nmco(I), I=i,NOIM)
c --NAHECO- the coordinatenames (CHARACTER*8)

c --Read the element type names

READ (NDB,END=900) (N~LB(I), I=i,NELBLIO

c --NAMELB- the elementtype names (CHARACTER*8)

The GENESIS section ofthe database ends atth.is point.

38

c --Readthe history,global,nodal, and elementvariableinformation

READ (NDB,END=900)NVARHI,NVARGL,NVARNP,NVAREL
c --NVARHI- the number of historyvariables

c --NVARGL- the number of global variables
c --NVARNP- the number of nodal variables
c --NVAREL- the number of elementvariables

READ (NDB)
& (NAMEHV(I), I=l,NVARHI),
& (NAMEGV(I) , I=l,NVARGL) ,

& (NAMENV(I), I=i,NvAm),

& (NAMEEV(I), 1=1,NVAREL)
c --NAMEHI- the historyvariablenames (CHARACTER*8)
c --NAMEGV- the global variablenames (CHARACTER*8)

c --NAMENV- the nodal variablenames (CHARACTER*8)
c --NAMEEV- the element variable names (CHARACTER*8)

READ (NDB) ((IsEVOK(I,J),I=I,NVAREL),J=I,NELBLK)
c --ISEVOK- the name truth table for the elementblocks;

c -- ISEVOK(i,j)refers to variablei of elementblock j;
c -. the value is O if and only if data will NOT be outputfor
c -- variable i for element block j (otherwisethe value is 1)

39

c --Read the time steps

130 CONTINUE
READ (NDB,END=900)TIME, HISTFL

c --TIME - the time step value
c --HISTFL- the time step type flag:
c -- 0.0 for all variablesoutput (“whole”time step) else
c -- only historyvariablesoutput (“history-only”time step)

c
READ (NDB) (VALHV(IVAR),IVAR=i,NVARGL)

c --VALHV - the historyvalues for the currenttime step

IF

c

c

c
140

&

c
c

(HISTFL .EQ. 0.0) THEN
MAD (NDB) (vALGv(IVAR),IVAR=i,HVARGL)
--VALGV - the global values for the currenttime step

DO 140 IVAR = 1, NVARNP
READ (NDB) (vALNV(INP,IVAR),INP=I,NUMNP)

--VALNV - the nodal variablesat each node
-- for the currenttime step

CONTINUE

DO 160 IBLK = 1, NELBLK
DO 150 IVAR = 1, NVAREL

IF (ISEVOK(IVAR,IBLK).NE.o) THEN
MAD (NDB) (VALEV(IEL,IVAR,IBLK),

IEL=l,NUMELB(IBLK))

--VALEV - the elementvariablesat each element
-- for the currenttime step

END IF

CONTINUE
CONTINUE

150
160

END IF

c --Handletime step data
...

GOTO 130

900 CONTINUE
c --Handleend of file on database

...

40

B. Summary of Functions

Standard FORTRAN Functions

r = AINT (z)

r = ANINT (z)

r = ABS (z)
r = MOD (z, y)
r = SIGN (z, y)
r = DIM (z, y)
r =MAX(z, y,...)
r= MI N(z, y,...)
r = SQRT (z)
r = EXP (z)

r = LOG (z)

r = LOGlO (z)

r = SIN (z)

r = COS (z)
r = TAN (z)

r = ASIN (z)

r = ACOS (z)

r = ATAN (z)

r = ATAN2 (z, y)

r = SINH (z)
r = COSH (z)
r = TANH (z)

truncation:[z/
nearestinteger:[z+ .5*sign(z)]
absolutevalue:Iz\
remainder:z – Y *[z/Y]

transferofsign:IZIsigny
positivedifference:z–min(z,y)

maximum ofz,y, . . .

minimum of x, y, , . .

square root: &

exponentiation: e=

natural logarithm: loge z

common logarithm: logloz

sine z

cosine z

tangent z

arc sine z

arc cosine z

arc tangent z

arc tangent x/y

hyperbolic sine z

hyperbolic cosine z

hyperbolic tangent z

Tensor Principal Values and Magnitude Functions

r = PMAX (Tll, T22, T33, T12, T23, T31) maximum principalvalues
r = PMIN (T’1, T22, T33, T12, T23, T31) minimum principal values
r = PMAX2 (Z’~~, 2“2, 2“~) maximum principalvalues (2D)

r = PMIN2 (T’ll, T22, T12) minimum principal values (2D)
r z TMAG (Tll, T22, T~3, T12, TZ3, T31) magfitude of the deviatoric part

41

IF Functions

r = 1FLZ (cord, rtrue, rfahe) I if cowl <0.0, rtrue else rfahe

r = IFEZ (cond, rtrue, rfahe) if cond = 0.0, rtrue else rfalse
r = I FGZ (cond, rtrue, rfahe) if cond >0.0, rtrue else rfahe

Array a Global Variable Functions

r= SUM (z) sum of z over all nodes or elements

r = SMAX (z) maximumof z over all nodes or elements
r = SMIN (z) minimum of z over all nodes or elements

Envelope Functions II
r = ENVMAX (z) maximum of z over all previoustime steps

r = ENVMIN (z) minimum of z over all previous time steps

C. Command Summary

Database Editing Commands (page 16)

TITLE

sets the title to be written to the output database.

Variable Selection Commands (page 17)

SAVE variablel, uariable2, . . . or optionl, opiion2, . . .

transfers variables from the input database to the output database.

DELETE uariablel, variablez, . . .

marks an assigned variable as a temporary variable that will not be written to

the output database.

Time Step Selection Commands (page 19)

TMIN tmin

sets the

TMAX tmaz

sets the

NINTV nintu

sets the

ZINTV nintv

sets the

minimum selected time to tmin.

maximum selected time to tmaz.

number of selected time intervals to nintv (delta offset).

number of selected time intervals to nintv (zero offset).

DELTIME delt

sets the selected timeintervalto deh.

ALLTIMES

selects all time steps between tmin and tmaz.

43

TIMES [ADD,] tl, tz, . . .

selects times tl, tz, etc.

STEPS [ADD,] nl, nz, . . .

selects time steps nl, nz, etc.

HISTORY ON or OFF

controls whether history time steps are included in the selected time steps.

Mesh Limiting Commands (page 22)

ZOO M zmin, zmaz, ymin, ymaz, zmin, zmaz

sets the limits of the mesh to be written to the output database.

VISIBLE [ADD or DELETE,] block.idl, block.idz, . . .

limits the element blocks to be written to the output database.

Element Block Selection Commands (page 23)

BLOCKS [ADD or DELETE,] block.idl, block-idz, . . .

selects the element blocks which have defined values for all following equa-

tions.

MATERIAL [ADD or DELETE,] block.idl, biock-idz, . . .

is exactly equivalent to a BLOCKS command.

Information and Termination Commands (page 24)

SHOW command

displays the settings of parameters relevant to the command.

LIST option

displays database information.

HELP option

displaysinformationabout theALGEBRA program.

LOG

requests that the log file be saved when the program is exited.

END

ends the equation input and begins the equation evaluation.

QUIT

ends the equation input and exits the program immediately without writing an

output database.

45

D. Sample Session

The following is an example session with ALGEBRA. Text following the ALGEBRA

prompt (ALGZ) is supplied by the user. The program response (if any) is shown

directly below the equation or command. Comments on the example are in italics.

ALG> LIST VARS

Database: uD:[APGILKE.ExoDus]TApEii.EXO;i

SAMPLE DATABASEFOR ALGEBRA

Number of coordinatesper node = 2
Number of nodes = 644
Number of elements = 480
Number of elementblocks = 1

Number of node sets = o
Number of side sets = o

Code: MISCPROG version 1.0 on 12/23/85 at 10:21:59

ALG> LIST STEPS

Number of time steps = 21 (includingO history-only)
Minimum time = 0.00
Maximum time = 10.00

47

ALG>SHOW TMAX
Select all times from 0.0 to 10.0

Number of selected times = 21

ALG> TMAX 5.0
Select all times from 0.0 to 5.0

Number of selectedtimes = 11

ALG>NINTV5
Select times 0.0 to 5.0 in 5 intervals with delta offset

Number of selected times = 5

These commands ~electup to5timeatep8 between 0.0and5.0 startingat anoflset

(1. O) from 0,0. The steps with the times nearest 1.0, 2.0, S.0, 4.0, and 5.0 are

selected. The equations are evaluated and the results written to the output database

only for the selected steps.

ALG> LIST NAMES

Coordinatenames: R Z

Variables Names:

History:
Global: RESIDUAL ENERGY NORM L2NORM
Nodal: DISPLR DISPLZ VELR VELZ ACCELR ACCELZ
Element: SIGR SIGZ SIGT TAURZ EPSR EPST

EPSRZ

ALG>SAVE NODAL

All the input database nodal variables (DISPLR, DISPLZ, ACCELZ) will be written

unchanged to the output database (unless they are assigned a value or listed in a

DELETE command).

48

ALG>
ALG>
ALG>
ALG>
ALG>

VONMISES = (l.0/SQRT(2.0)) * TMAG(SIGR,SIGZ, SIGT,TAURZ,O,O)
EFFSTR = SQRT(l.5) * 5.79 E-3 * V0NMlSES**4 * EXP(-12.0/300.0 *1,987)
PRESS = (SIGR + SIGZ + SIGT) / 3.0
PRESSlOO = (SIGR$1OO+ SIGZ$1OO+ SIGT$1OO)/ 3.0
PHI = EFFSTR – 0.023 – PRESS * (4.43E–8 – 3.7E–15 * PRESS)

ALG> ALPHA = SIGR$56
ALG> BETA = ALPHA + 1.414

Assign element variables VON M IS ES, EFFSTR, PRESS, and PHI and global variables

PRESSlOO, ALPHA, and BETA. Note that the PRESSlOO equation could be replaced

by “PRESSlOO = PRESS$1OO “.

ALG> DELETE ALPHA

ALPHA (assigned in the equation “ALPHA = SIGR$56” above) becomes a temporary

variable and will not be written to the output database.

ALG> BAD = (A + 1)) + SIN (1,2)
*** Expected 1 parameter(s) for function SIN, found 2
*** p~enthesis do not bal~ce

*** llA!l is not a database v~iable

Equation ignored

This equation contains several errors. Each error isj?agged and the equation is

ignored.

ALG> END

No further user input is accepted and the equation evaluation begins.

49

50

E. Site Supplements

E.1 VAX VMS

The command to execute ALGEBRA on VMS is:

ALGEBRA input.database output.database user-input

Input-database isthe filename of the input EXODUS database. A prompt appears if

input_database is omitted. The default is TAPE1l. EXO.

Output_daiabase is the filename of the output EXODUS database. A prompt appears

if ouiput_databa~e is omitted. The default is TAPE12. EXO.

If u3er_input is given, the user input is read from this file. Otherwise user in-

put is read from SYS$INPUT (the terminal keyboard). User output is directed

to SYS$OUTPUT (the terminal).

ALGEBRA operates in either interactive or batch modes.

E.2 CRAY CTSS

To execute ALGEBRA, the user must have selected the acclib library and be running

ccl.

The command to execute ALGEBRA on CTSS is:

algebra input_ database output_database i=input o=output .

Input-database is the filename of the input EXODUS database. The default is tapell.

Output-database isthe filename of the output EXODUS database. The default is

tapell.

User input is read from input, which defaults to tty (the terminal keyword). User

output is directed to output, which defaults to tty (the terminal).

51

52

Distribution:

1510
1511
1520

1521
1522
1523
1523
1524
1530
i531
1533
1550
1556
3141
3151
3154-
6258
6334
6334
6334
6334
6334
8240
8241
8242
8243

8244
8245
8524

J. W. Nunziato

D. K. Gartling

L. W. Davison

R. D. Krieg and Staff (12)

R. C. Reuter, Jr. and Staff (15)

J. H. Biffle end Staff (12)
A. P. Gilkey (30)
A. K. Miller and Staff (12)
W. Herrmann,Actg.
S. L. Thompson
S. T. Montgomery
C. W. Peterson,Jr.
U. L. Oberkampf
S. A. Landenberger(5)
W. I. Klein (3)

1 for DOE/OSTI (8)

D. S. Preece
H. J. Iuzzolino

R. D. McCurley
J. S. Rath
R. P. Rechard
E. Shepherd
C. W. Robinson
G. A. Benedetti
M. R. Birnbaum
M. L. Callabresi
C. M. Hartwig
R. J. Kee

P. W. Dean

53

	Abstract
	ACKNOWLEDGEMENTS
	Contents
	1. Introduction
	2. Equation Input
	2.1 The Assigned Variable
	2.2 Restricting the Nodes and/or Elements
	2.3 Constants
	2.4 Variables
	2.5 Operators
	2.6 Functions

	3. Command Input
	3.1 Database Editing Commands
	3.2 Variable Selection Commands
	3.3 Time Step Selection Commands
	3.4 Mesh Limiting Commands
	3.5 Element Block Selection Commands
	3.6 Information and Termination Commands

	4. The Output EXODUS Database
	5. Informational and Error Messages
	6. Executing ALGEBRA
	6.1 Execution Files
	6.2 Special Software

	References
	A. The EXODUS Database Format
	B. Summary of Functions
	C. Command Summary
	D. Sample Session
	E. Site Supplements
	Distribution

